The law of large numbers and the law of the iterated logarithm for infinite dimensional interacting diffusion processes

نویسندگان

  • Byron Schmuland
  • Wei Sun
چکیده

The classical Dirichlet form given by the intrinsic gradient on ΓRd is associated with a Markov process consisting of a countable family of interacting diffusions. By considering each diffusion as a particle with unit mass, the randomly evolving configuration can be thought of as a Radon measure valued diffusion. The quasi-sure analysis of Dirichlet forms is used to find exceptional sets of configurations for this Markov process. We consider large scale properties of the configuration and show that, for quite general measures, the process never hits those unusual configurations that violate the law of large numbers. Furthermore, for certain Gibbs measures, which model random particles in Rd that interact via a potential function, we show, for d ≤ 3, that the process never hits those unusual configurations that violate the law of the iterated logarithm. AMS (1991) subject classification 60H07, 31C25, 60G57, 60G60

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

Lévy Classes and Self–normalization*

We prove a Chung’s law of the iterated logarithm for recurrent linear Markov processes. In order to attain this level of generality, our normalization is random. In particular, when the Markov process in question is a diffusion, we obtain the integral test corresponding to a law of the iterated logarithm due to Knight.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000